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1 Introduction

Matching algorithms, or more specifically referred as Graph Matching algorithms
under the context of Traditional Computer Science (TCS), has been a fundamental part of
Graph theory due to its wide applications ( , ). For its popularity in the
TCS scene, readers are assumed to have a basic understanding on the problem definition
of online graph matching, and those who are unfamiliar with the literature are suggested
to go through the Appendix ?? for a gentle introduction to the topic. While the topic has
been around the scene ever since the founding of the Graph theory field and solutions of the
original problem ( , ; , ) have been widely circulated, there are still many
open problems to be answered for the online variant of the problem, and the field remains
to be under active development.

1.1 Current Research Frontier

The following topics of particular significance are shortlisted for readers to better understand
the current focus of the HKU TCS Group regarding graph matching.

Online Bipartite Matching

This subclass of online matching problem restricts the input graph to be an instance of bi-
partite graph, denoted as G((, L), R, E), where L U R is the set of vertices, with L. and R
representing the offline and online vertices respectively. Under this setting, while all vertices
LUR are revealed to the algorithm on initialization, all edges (v € L, v € R) are only known
to the algorithm on arrival of v, i.e. an online update indicating v’s availability is received.
Moreover, the algorithm is required to either irreversibly match it to some unmatched neigh-
bor u (i.e. u will not be available for future arrivals of v* € R), or to leave v unmatched
forever. Since the algorithm is forced to make decisions without full knowledge of the graph,
it is doomed to make sub-optimal decisions compared to its offline counterparts, and its
performance is evaluated by comparing the output against the maximum matching under
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some benchmark, with the most trivial examples being Maximum cardinality bipartite
matching and Maximum weighted bipartite matching. The choice of benchmark has
gave rise to various open problems. Works in the scene could usually be classified into one
of the following categories:

1. Proposing some optimal solution for some setting. Notable examples are the
Ranking algorithm ( , ) and the Water-level algorithm (

) )

2. Analyzing extensions of some existing popular algorithms. Typical works along
this line of work extends either the Ranking algorithm or the Water-level algorithm to
some other setting which it was not originally designed for, possibly a de novo setting
proposed by the paper. Papers published by our group usually falls under the group

( : )-

3. Improving current analysis. For most works in the literature, improvement here
refers to improving the tightness of the bound of performances (such as
( )), i.e. closing the gap between the best possible and guaranteed performances
in the worst case scenario. In some rare occurrences, it may refer to improving the
intuitiveness of the analysis, such as the Randomized Primal-Dual Framework (

: )-
Randomized Primal-Dual Framework

While the technical details of the framework is out of the scope of this non-technical project
plan, a high-level brief introduction is provided in Appendix B for completeness, as it is
expected that the framework will be am integral part of our work. This framework presented
a generic proof that enabled the community to better understand the characteristics of the
Ranking algorithm, and has been foundation stone of most of the proofs in the field for the
past few years, such as the Fully Online Matching Model ( : ).

Fully Online Matching Model

Recently ( ) has proposed a new model where both L. and R are made
online. To accommodate this change, each update could signify either the arrival or the
departure (i.e. deadline) of the node v, and the algorithm need not to finalize its decision
w.r.t. v immediately on its arrival, but any time before (or on) receiving its departure update.
Note that the original model is a special case of this de novo model, where all online vertices’
having arrival updates followed by departure updates immediately, and all offline vertices
have their departure updates postponed indefinitely.

While the tentative title of this project "Theoretical Research on Online Matching" enjoys an
extremely broad scope, it is expected that the work will be mostly related to the fully online
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(bipartite) matching model, due to the lack of room for improvement in the original model.
On the other hand, the fully online matching model provides a lot of exciting opportunities:
While other research groups has recogmzed the potential of this model and published works
based on it ( , , ), it is still less saturated compared
to the original model that has been studied for decades. I believe that this topic is a perfect
candidate for my Final Year Project, as

o It promises room for work;
o [ have studied all the prerequisites of this topic, namely dual LP and graph matching;

o It provides a hands-on experience on a challenging topic to prepare for my post graduate
studies in the future;

o It is one of the most well-recognized fields in the TCS community.

1.2 Open Problems

These settings, sorted by my preferences non-decreasingly, has been worked actively before
the fully online model was presented, are yet to be solved in the context of the fully online
model (and also in the original model). The following settings are not mutually exclusive
with each other and could be added on top of the online model simultaneously for analysis.

Online Maximum Weighted Matching: Currently, there is a rather significant discrep-
ancy between the best known bounds of the two cases in the original model (with random
arrival order, see the following paragraph). caused by the fact that state-of-the-art of the
unweighted analysis relies heavily on symmetry ( , ;

), which the weighted analysis could not rely on ( , ). A similar branch
of work also exists in the context of the fully online model. While the original paper only
considered the unweighted setting, recent works by some other research groups has general-
ized the fully online model to a weighted setting ( ( ),

( )), and an attempt to extend their works would be interesting and valuable.

Random Arrival Order: In the context of Algorithm complexity analysis, worst-case
analysis is usually used as default. Under the context of graph matching, most of the com-
munity’s works used to assume the nodes of the online side could show up in arbitrary order,
and benchmark the algorithm’s performances on the worst sequence w.r.t. the algorithm’s
performance. The field under this assumption has already saturated, as ( )
proposed an optimal solution under the integral setting. Meanwhile, in many practical use
cases the underlying algorithm is transparent to the online party (e.g. ride sharing), and it
may not be well-justified that the online party’s arrival order is adapting aggressively against
the algorithm’s interest (e.g. University admission on a rolling basis). This has inspired
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the line of "random arrival" analysis which could be treated as an analogy of average-case
analysis. Under this setting, the online party’s arrival order is assumed to be shuffled uni-
formly at random (or a distribution specific to the use case), and the optimal result is yet
to be found. Yet the current state-of-the-art result has been promising as it goes beyond
the 1 — 1/e approximation ratio ( : ), which was believed to be a natural
optimal bound shared by many important Computer Science approximation problems.

General Graph Matching: The general setting has been receiving a lot less attention
compared with the bipartite setting due to its complexity. For example, the algorithm for
finding the maximum (general) graph matching in the offline variant ( : ) is
vastly different and more tedious compared to its bipartite counterpart ( ,

). Yet, risk taking comes with great opportunities — There are a lot more room for
development compared to the saturated bipartite scene. In fact, the original fully online
model paper ( , ) also provided some valuable insights onto the general
setting as a starting point.

1.3 Tentative Schedule

It is forecasted that the project comes with a high risk of running into bottle-necks due to
its challenging nature, and it is impossible to predict our research progress in the upcoming
months, a tentative schedule of the project is proposed as in Table 1. Readers should be
reminded that the following schedule is highly susceptible to changes.

1.4 Deliverables

While the course expects the students to implement their projects to submit a tangible
deliverable (highlighted with red in Table 1), our success on the topic is not guaranteed even
with best efforts committed, due to the project’s nature. The mid-progress review on mid
January is expected to serve as a sanity check as we will have a better understanding in the
problem’s hardness, while having sufficient time ahead to turn around if needed. Either way,
the project is expected to produce a thesis or a survey within the Online Matching field,
which is either ready for publishment if the project is successful, or as a tangible proof of
involvement in the project.

1.4.1 Project website

Other than this report, the inception stage also requires the student to submit a project
website, which is hosted on Haley Kwok’s FYP account.


 http://i.cs.hku.hk/fyp/2019/fyp19061/ 
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Table 1: Project timetable

Date

Milestones

Course requirement?

29/09/2019

Deliverables of inception
e Detailed project plan

e Project web page

Yes

Late Oct /
Early Nov

Complete background research
e Scan through most of the works in the
field

e Scrutinize at least 3 of them of
particular interest

o Narrow down the project scope to a
specific topic

Semester break

Conduct research based on the specific topic

13-17/01,/2020

First presentation

Mid Jan

Mid-progress review
» Report on preliminary progress

e Decide if the targeted result is
achievable

o If not, justify the cause of impossibility
in interim report and select another
topic

02,/02,/2020

Deliverables of Elaboration
o Preliminary implementation

e Detailed interim report

Yes

Early April

Finalize the research results
e Decide if the research result is
successful enough for publishment

No

19/04,2020

Deliverables of Construction
e Finalized tested implementation

o Final report

Yes

20-24/04,/2020

Final presentation

Yes

05,/05/2020

Project exhibition

Yes

03/06/2020

Project competition

Top only
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1.4.2 Software/Technologies used

Academic papers produced by this project should be formatted in KTEXprofessionally. There
are no other strict constraints posed on the other deliverables.

The project’s website is developed with the Github Pages utility, using the Jekyll templates
that are publicly available to all users.
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A Introduction to Graph Matching for non-specialists

This subsection is devoted to introducing the basics of graph matching algorithms. Through-
out this chapter, the "car renting" problem will be proposed to show the model’s practicalness,
with its variations presented to demonstrate its generality, and to highlight the minor differ-
ences between models under different settings.

A.1 Maximum Cardinality Graph Matching

Imagine that you are running a car renting company. The company maintains a list of
reservations received from the clients, where each reservation consists of a unit demand client,
and a list of cars that could be used to satisfy the client’s needs. (Clients with demanding
more than one cars may make more than one reservations to satisfy their needs) The company
is interested in understanding how to allocate (i.e. match) cars to clients to align with the
company’s objective. In this subsection, it is assumed that the company’s objective is to
maximum the amount of fulfilled reservation.

For example, consider a use case with three customers and cars pictured in Figure 1. Car #1
has all three clients connected to it, indicating that all three clients’ demand could be fulfilled
by car #1 (albeit car #1 could only be matched once); Car #2 has no clients connected to it,
indicating that no demands could be fulfilled by car #2. An optimal allocation is highlighted
in red lines. The red lines indicate one of the optimal scheme that maximizes the amount of
fulfilled reservations. Note that the optimal scheme need not to be unique?.

3Tn this example case, matching car #1 to client #2 instead also fulfills two reservations and hence is
optimal.


http://doi.acm.org/10.1145/1993636.1993716
http://doi.acm.org/10.1145/1993636.1993716
doi:10.1112/jlms/s1-10.37.26

University Number: . . COMP4801-1A-2019
3035 371 587 Detailed Project Plan October 16, 2019

Figure 1: Example use case Figure 2: Example graph

To look at this problem from a Computer Scientist’s perspective, we may abstract the clients/-
cars as a set of vertices V, the reservations as a set of edges connecting the clients and their
preferences E. and each problem instance as a simple graph G(V, E). All allocation schemes
are abstracted as a matching M which is a subset of E. Motivated by the car renting problem,
each car is matched to at most one client, and vice versa. This is equivalent as saying "No
car/client is involved in more than one allocation', or mathematically written as "No vertex
is connected to more than one edge in the matching", formulated as Ve, e’ € M : ene’ = 0.

The objective of the maximum cardinality graph matching problem (often abbreviated to
"graph matching" when the context is clear) is to maximize the cardinality of the matching
M|, i.e. the amount of fulfilled reservations.

A.2 Maximum bipartite graph matching

Our car renting use case could be further classified as a bipartite graph matching problem.
Bipartite graph matching is a slightly more restrictive class of the (general) graph matching,
in which the discussed graph must be bipartite?, usually represented as G(LUR, E). Thanks
to numerous properties guaranteed by the bipartite structure, research progress of this branch
is far more advanced than the general setting®. Despite of the restriction, the model remains
to be relevant in most use cases, such as the car renting example and other client-server
applications.

A.3 Maximum weighted graph matching

In reality, each of the reservation need not to generate the same amount of profit. To capture
this behavior, the model is extended such that each client v is associated with a budget w,,

4Recall that a graph is bipartite if and only if its nodes could be partitioned into two sets L and R, such
that each of the edges connects a node between Land R.

5For example, you might have heard of classical theorems that are only applicable to bipartite graphs,
such as the Hall’s marriage theorem ( , ) and the Konig’s theorem ( , ).


 https://en.wikipedia.org/wiki/Hall
https://en.wikipedia.org/wiki/K%C5%91nig%27s_theorem_(graph_theory)
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Figure 3: The company doesn’t know which car is more preferred by the majority

and the company’s objective is altered to maximize its profit instead of fulfilled reservations,
i.e. > ,cv w,. This modelling could also be extended to the cars, e.g. w, is a negative number
which represents the expense for deploying car .

A.4 Online bipartite graph matching

Sometimes it may be unrealistic to assume all reservations are known a priori, to see this,
consider a variant of car renting which provides services on demand - Whenever the client
makes a call to the reception, she (a) gets served and pays to the company (i.e. matched to
some taxi) or, (b) gets rejected hence doesn’t pay (i.e. not matched to any taxi).

To clarify how the model operates, consider an example case which follows from Figure 1.
Imagine that the clients came in the order of 3 — 1 — 2. When client #3 approaches the
reception, the company could either assign car #1 or car #3 to the client. If the company
assigns car #1 to the client, it will not be available for service for client #1 and #2 in the
future.

Since the company is forced to make decisions without full disclosure of future demands, e.g.
it cannot distinguish between Figure 1 and 3, it may not always generate optimal revenue
even if it operates optimally, and such dilemma is the crux of online matching.

We propose the following mathematical abstraction: Denote the graph as G(L U R, E),
vertices v € L are named as "offline vertices' (The cars on the left in our example), while
u € R are named as "online vertices" (The clients on the right in our example).

Researchers benchmarks online algorithms’ using the notion "approximation ratio" F. Denote

ALG(G) as the matching outputted by the algorithm ALG, and OPT(G) as the optimal
matching (achieved by offline solutions). The approximation ratio is defined as

F = i {Sona )

i.e. the minimal fraction of the optimal matching secured by the algorithm in the worst case
scenario.
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The first and most famous optimal algorithm is the ranking algorithm proposed by
( ), The work comes with a heart-breaking corollary that "randomization is necessary to

achieve the approximation ratio"®.

The online weighted graph matching problem also has a weighted variant defined similarly to
its offline counterpart, yet the most analysis restricts all online nodes to have a zero weight,
i.e. w, =0 Vv € R This limitation may be too restricting to some use cases, as in we cannot
assign weights to clients (online vertices) in the car renting problem. To this extent, reader

may consider the "fully online" model proposed by ( ) to overcome this
shortcoming, with its weighted variant discussed in the works of ( );
( ), which is out of this chapter’s scope to not overwhelm our readers.

A.5 Fractional graph matching

It was later shown by ( ) that with some slight modifications
to the definition of matching, their proposed (determinstic) waterlevel algorithm is optimal.

Consider a variant of the car renting model with a gigantic market. Instead of modelling
cars/clients as vertices, garages of B cars/clusters of B clients each are modelled as a single
node. This modelling. called b-matching, relaxes the matching constraint in a way that all
nodes could be matched for at most B times repetitively. For the special case where B —
00, called fractional matching, (on contrast, the original model is called integral matching)
arbitrary fractions of vertices may be matched to its neighbour, as long as (a) both nodes
along the edge committed the same fraction, and (b) the total fraction committed for any
node does not exceed 1.

B Introduction to the Randomized Primal Dual Frame-
work

This section is devoted to provide a gentle introduction to the Randomized Primal Dual
Framework for the reader. For simplicity, only the unweighted use case is considered here.

Consider the standard Linear Programming relaxation of the fractional matching problem:

max: Z Wy * Tyo

(u,v)EE

S.b.: Z T < 1 YueV
vi(u,v)EE
Tuy > 0 V(u,v) € £

6Precisely speaking, the work proved that 'no deterministic algorithm achieves an approximation ratio
better than 0.5. It is trivial that the naive algorithm which matches the online nodes to any offline node that
is unmatched on its arrival achieves the same approximation ratio.

10
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where x,, is the fraction of the edge (u,v) used in the matching.

The program has a corresponding dual LP formulated as follows:

min: Z Qy,

u€LUR
Sty Fay, >1 V(u,v) € E
a, >0 Vue LUR

Then, the rest of the framework is dedicated to design a function g. The function is related to
the algorithm in the sense that whenever it (randomly) matches the vertices u € L and v € R
under some parameterized situation A, it contributes g(\) to a,, and 1—g(\) to a,,. Then, the
algorithm is said to be a F-approximation if fulfills the constraint a,, +a, > 1/F Y(u,v) € E,
due to the following arguments:

o The algorithm provides a witness for the dual variables «, and its expected performance
is ALG, i.e. Y erur ou = EF[ALG].

« The witness satisfies the constraint a, + o, > 1/F V(u,v) € E, which could be scaled
to the original constraints F'(ay, + a,) == ay, + d, > 1 VY(u,v) € E.

o The scaled witness is lower-bounded by the optimal fractional solution OPT, i.e.
OPT < X yerur Au-

Joining the arguments together gives the following inequality ( , ):
N 1 1
OPT < Z Ay = — Z a, = — E[ALG].
u€LUR Féir oy

To give a concrete example, consider the following descriptions of the ranking algorithm
under the framework:

o Let y, be the rank assigned to the vertex u € L which is drawn from [0, 1] uniformly
at random, and ¥ as the vectorized ranking of all vertices in L.

o The ranking algorithm matches all vertices v € R to the available neighbour v € L
with the highest ranking upon arrival, and contributes to dual variables «,,, «a, based
on g, \.

o The function uses the rank y, as the only parameter, and is implemented as g(\) =
9(y = y,) = €¥"1. One could show that the dual constraint is satisfied with F' =1—1/e.

11
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C Outlined official guidelines

The official guideline for detailed project plan supplemented by the course’s page is outlined
as follows, for the grader’s convenience.

o Project background The background of the problem has been sufficiently covered in
Section 1.1, 1.2 and Appendix 7?7

o Project objective
The deliverables of this project is listed in Section 1.4.

e Project methodology
The usage of the Randomized Primal Dual Framework and possibly the Fully Online
Model is justified in Section 1.1, and their details are briefly mentioned in Appendix B
and Section 1.1 respectively.

e Project Schedule and Milestones
A detailed list of verifiable milestones is listed in Section 1.3.

12
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